
Transfer Functions, Poles and Zeros

For the design of a control system, it is important to understand how the system of interest 

behaves and how it responds to different controller designs. The Laplace transform, as 

discussed in the Laplace Transforms module, is a valuable tool that can be used to solve 

differential equations and obtain the dynamic response of a system. Additionally, the Laplace 

transform makes it possible to obtain information relating to the qualitative behavior of the 

system response without actually solving for the dynamic response. The poles and zeros of a 

system, which are the main focus of this module, provide information on the characteristic 

terms that will compose the response. This is very useful because it allows a control system 

designer to understand how the design parameters can be manipulated to obtain acceptable 

response characteristics. Using a graphical trial and error approach called the root-locus 

design method, the designer can alter the design parameters to values that lead to an 

acceptable response and then verify the design by solving for the time response of the system.

This module is a continuation of the Laplace Transforms module and provides an introduction 

to the concept of Transfer functions and the poles and zeros of a system.   

(This command loads the functions required for computing Laplace and Inverse Laplace transforms)

Transfer Functions

A transfer function  is defined as the following relation between the output of the system

 and the input to the system .

... Eq. (1)

If the transfer function of a system is known then the response of the system  can be 

found by taking the inverse Laplace transform of . It is also important to note that 

a transfer function is only defined for linear time invariant systems with all initial conditions 

set to zero.



If the input to the system is a unit impulse ( ), then

... Eq. (2)

Therefore, the inverse Laplace transform of the Transfer function of a system is the unit 

impulse response of the system. This can be thought of as the response to a brief external 

disturbance. 

Example 1: Transfer function of a Spring-mass system with viscous 
damping

Problem Statement: The following differential 

equation is the equation of motion for an ideal 

spring-mass system with damping and an 

external force 

Find the transfer function.

Fig. 1: Spring-mass system with damping

Solution

Taking the Laplace transform of both sides of the equation of motion gives

This equation can be rearranged to get

Therefore, the transfer function for this system is



(1.1.1.1)(1.1.1.1)

(1.1.1.2)(1.1.1.2)

The system response can be found be taking the inverse Laplace transform of 

. If  and the input is a step function , then the system 

response is

Example 2: Transfer function of a DC Motor (with MapleSim)

Problem Statement: A DC motor is modeled using the equivalent circuit shown in Fig. 2.



Find the transfer function relating the angular velocity of the shaft and the input voltage. 

Fig. 2: DC Motor model

This example demonstrates how to obtain the transfer function of a system using 
MapleSim.

Analytical Solution

The equivalent circuit consists of a voltage source which is the input, a resistor, an 

inductor and a "back EMF" voltage source. The back EMF depends on the rate of 

rotation and can be expressed as

where  is a constant of proportionality called the electric constant and  is the

angular speed. 

The torque on the rotor is proportional to the armature current  and can be 

expressed as 

where  is a constant of proportionality called the torque constant. It should be noted 

that the electric constant and the motor constant are equal to each other when 



expressed in the same units ( . 

The dynamic equation for the circuit is

where  is the input voltage,  is the resistance of the resistor and  is the 

inductance of the inductor. The Laplace transform of this equation is

... Eq. (3)

The dynamic equation for the rotor is

where  is the moment of inertia of the rotor and b is the damping constant. The 

Laplace transform of this equation is

... Eq. (4)

Combining Eqs. (3) and (4) and eliminating  yields

This equation can be rearranged to obtain the required transfer function:



Solution using MapleSim

Constructing the model

Step 1: Insert Component

Drag the following components into the workspace:

Table 1: Components and locations

Compon
ent Location

Signal Blocks > 
Common

Electrical > 
Analog > Sources 

> Voltage 

Electrical > 
Analog > 
Common

Electrical > 
Analog > 
Common

Electrical > 
Analog > 
Common

Electrical > 



Analog > 
Common

1-D Mechanical > 
Rotational > 

Common

1-D Mechanical > 
Rotational > 

Common

1-D Mechanical > 
Rotational > 

Common

1-D Mechanical > 
Rotational > 

Sensors

Step 2: Connect the components

Connect the components as shown in the following diagram:
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Fig. 3: Component diagram

Step 3: Create a subsystem

Highlight all the components, excluding the Step component.

Press Ctrl+G to create the subsystem. 

Name the subsystem DCMotor and click OK.

Double click the subsystem and click Add or Change Parameters in the 

inspector tab.

Create the parameters as shown below. 

Fig. 4: Parameters

Return to the subsystem component diagram and enter these variables for the

corresponding parameters of the components. For example, click the

Resistor component and enter  for the Resistance ( ) in the Inspector tab. 

Click the output of the Angle Sensor component and connect it to the dashed

line that represents the boundary of the subsystem. 
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Fig. 5: Subsystem

Obtaining the system equations

Click the Create attachment from template icon ( ).

Select Equations from the list and click Create Attachment. This will launch 

a Maple window.

In the launched worksheet, select the DCMotor subsystem in the drop-down 

menu for Step 1: Subsystem Selection and then click Load Selected 
Subsystem.

Under DAE Variables rename the variables to simplify the equations. 

Rename I2_phi(t), I2_w(t),SV1_n_v(t), emf1_p_i(t) and u1(t) as phi(t), w(t), 
v(t), i(t) and u(t) respectively. 

Click Reassign Equations.

Scroll down to Step 2: View Equations. These are the dynamic equations for 

the subsystem and are assigned to the variable DAEs.

Scroll down to the bottom of the work sheet and execute the following 

commands to obtain the system transfer function. 



Fig. 6: System Transfer Function

This transfer function matches the one obtained analytically.

Poles and Zeros

Zeros are defined as the roots of the polynomial of the numerator of a transfer function and

poles are defined as the roots of the denominator of a transfer function. For the generalized 

transfer function 

... Eq. (5)

The zeros are  and the poles are 

Identifying the poles and zeros of a transfer function aids in understanding the behavior of 

the system. For example, consider the transfer function  .This 

function has three poles, two of which are negative integers and one of which is zero. Using 

the method of partial fractions, this transfer function can be written as 

 and its time response (with a unit impulse input) can be found 

to be  . This shows that the negative poles contribute exponential



terms that decay with time and that the pole at 0 contributes a constant term. If we take 

another transfer function, for example , without solving for the 

solution, we can now conclude that the pole at 0 will contribute a constant term, the 

negative pole will contribute a term that decays with time and the positive pole will 

contribute a term that grows with time. This allows us to further conclude that the response 

will be unstable because it will continuously grow with time due to the positive pole. The 

following plot shows the time response of .

 Response Plot Response Plot

Now consider the transfer function . This function also has 

three poles, however, two of these are complex. Using the method of partial fractions, this 

can be written as  and the time response (with a unit

impulse input) can be found to be  . This shows that the 

complex poles contribute sinusoidal terms and result in oscillations in the system response. 

These examples illustrate that the location of the poles on a complex plane can help obtain 

a qualitative understanding of characteristics of the time response. The following plot shows

the poles of the transfer functions of  and  plotted on the complex plane (or the s-

plane). 



(2.1)(2.1)

The interactive plots given below can be used to better understand the effect of pole 

locations on a system's response. The following plot shows the transient response of a 

system with two real poles for a unit-impulse input and a unit-step input. One of these poles 

is fixed at -0.5 and the other can be dragged on the real axis to see the effect on the 

response. 



The following plot shows the transient response of a system with a real pole and a pair of 

complex poles for a unit-impulse input and a unit-step input. These poles can be dragged on

the s-plane to see the effect on the response. 

The following plot shows the transient response of a system with a real zero and a pair of 

complex poles for a unit-impulse input and a unit-step input. The response of the system 

without the zero is also included for comparison. The poles and zero can be dragged on the 

s-plane to see the effect on the response.



The effect of zeros are not covered in detail in this module; however, it is important to note 

that the step response of a system with a pole is a combination of a step and an impulse 

response of the system without the pole: 

The step response of the transfer function  can be 

written as

This can be expanded to get

The first term on the RHS is an impulse response and second term is a step response. 

Unit impulse response plots for some different cases

This subsection contains some more plots that show the effect of pole locations and help

illustrate the general trends. 

Dynamic response plots Transfer function pole 
locations



Comparison of: 

 Response plot Response plot
 Poles plot Poles plot

Comparison of: 
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Comparison of: 
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Comparison of: 
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Comparison of: 

 Response Plot Response Plot  Poles plot Poles plot



Fig. 7 shows the general rule of how the location of the poles on the s-plane effects the time

response of a system.



Fig. 7: The s-plane
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